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PREFACE 

This Report is one of a continuing series of studies 

documenting research on group judgment.  Studies to date 

have indicated that substantial Improvements can be made 

in procedures for formulating group judgments in those 

areas where the best information available is expert 

opinion. 

Cross-impact analysis is a method of taking account 

of the interrelationships of a set of events in assessing 

the individual probabilities of those events.  It has been 

applied in studies of future technological developments 

and social trends. 

This Report provides a logical foundation for an ele- 

mentary form of cross-impact analysis.  It should be of 

interest to military and industrial agencies concerned 

with long-range forecasting of technological and social 

events.  It probably also has applications in the study 

of large systems of events that interact probabilistically. 

The research was supported by the Advanced Research 

Projects Agency of the Department of Defense. 

Readers interested in other studies of the group 

judgment technology project should see References 3 

through 9. 
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SUMMARY 

Cross-impact analysis is a method for revising esti- 

mated probabilities of future events in terms of estimated 

interactions among those events. This Report presents an 

elementary cross-impact model where the cross-impacts are 

formulated as relative probabilities. Conditions are 

derived for the consistency of the matrix of relative 

probabilities of n events. An extension also provides 

a necessary condition for the vector of absolute probabil- 

ities to be consistent with the relative probability 

matrix. An averaging technique is formulated for resolving 

inconsistencies in the matrix, and a nearest-point computa- 

tion derived for resolving inconsistencies between the set 

of absolute probabilities and the matrix. 

Although elementary, the present model clarifies some 

of the conceptual problems associated with cross-impact 

analysis, and supplies a relatively sound basis for revis- 

ing probability estimates in the limited case where inter- 

actions can be approximated by relative probabilities. 

^ ■ .. ■ 
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AN ELEMENTARY CROSS-IMPACT MODEL 

N. C. Dalkey 

I.  INTRODUCTION 

One of the more promising new tools for long-range 

forecasting Is cross-Impact analysis. The general notion 

was first suggested by Helmer and Gordon with the game 

"Futures" created for the Kaiser Corporation. Cross-Impact 

analysis has now been expanded and applied to a number of 

forecasting areas by Gordon and others at The Institute 

for the Future [1]. The motivation for cross-Impact anal- 

ysis arises from a basic aspect of long-range forecasting. 

There are usually strong Interactions among a set of poten- 

tial technological events or among a set of potential social 

developments.  In assessing the likelihood that any given 

event or development will occur, the Interactions with other 

events are clearly relevant. However, the number of first- 

order potential Interactions Increases as the square of the 

number of events. Even If a matrix describing the Inter- 

actions Is available—say from estimates furnished by a 

panel of experts—the task of thinking through the Implica- 

tions rapidly gets out of hand.  Some computational aid is 

required to take account of the large number of interde- 

pendencies. 

  ._.. . . 
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Gordon and others at The Institute for the Future 

have developed two major approaches to the computational 

program.  Both approaches involve (1) preliminary esti- 

mates of the absolute probabilities, (i.e., the probabili- 

ties of the individual events, (2) estimates of the inter- 

dependencies in terms of a cross-impact matrix, (3) a 

Monte Carlo sampling of chains of events in which the 

probability of an event in the chain is modified by the 

cross-impact of the previously occurring event in the 

chain, and (4) reestimation of the absolute probability 

of each event in terms of the relative frequency of the 

occurrence of that event in the sample of chains. The 

difference between the two approaches lies in the mode 

of modification of the probabilities.  In the first 

approach, the basic method, the modification is effected 

by a heuristic algorithm. Cross-impacts are rated on a 

nominal scale of -10 to +10. Modification of successive 

probabilities is computed via a family of quadratic "ad- 

justments," based on the cross-impact rating and the 

unmodified probability. The second approach, the 

They actually have worked with four variations of the 
cross-impact technique. Two of these variations, the dynam- 
ic model and the scenario model, involve aspects of the 
interdependency problem (namely, strict time or order rela- 
tionships) which are beyond the scope of the present paper. 
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likelihood ratio method, defines cross-impacts in terms of 

a factor by which the odds favoring the target event are 

to be multiplied, given the occurrence of the impacting 

event. The second approach is conceptually clearer than 

the first, and removes some of the arbitrariness associated 

with it. 

Both approaches suffer from a lack of clarity concern- 

ing the purpose of the computation. The notion of "taking 

account of the interactions" is not adequate to answer 

questions such as "are the revised probabilities in fact 

more accurate estimates than the original ones"? In addi- 

tion, as will be seen below, the Monte Carlo computation 

contains implicit assumptions concerning higher-order 

interactions that are not defined, and are surprisingly 

difficult to state precisely.  (To say they are implicit 

is not to say they are not recognized by the developers 

of the method, only that the nature of the assumptions 

is not clearly stated.) 

In this Report an elementary model of probability 

cross-impacts is formulated that clarifies the notion of 

"taking account of interactions," and does this without 

requiring any assumptions concerning higher-order inter- 

actions. The model is based on fundamental postulates and 
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theorems of probability. The model does not take into 

account all of the aspects of an interacting system that 

are pertinent — in particular, it neglects time as a 

parameter. More generally, it neglects nonprobabilistic 

order effects. 

The approach is elementary in two respects. First, 

the type of probability system and the form of the cross- 

impacts (interdependence) assumed are of a very simple 

probabilistic form.  Second, the notion of taking account 

of the interactions is elementary.  It can be described 

as follows: If an individual or a group estimates a set 

of probabilities of events and this set contains inter- 

active terms, then the set may be inconsistent. The 

purpose of computation, then, is to test the consistency 

of the set of estimates, and if the set is not consistent, 

to perform the smallest reasonable perturbation on the 

original estimates to create a set that is consistent. 

As soon as the consistent set is achieved — from this 

elementary point of view — the interactions have been 

"taken into account." 

It might not hurt to amplify this point slightly. 

If we assume that the purpose of cross-impact analysis is 

to arrive at the best possible estimate of the separate 

... ,  
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* 
probabilities of each of the events, then regardless of 

how the original estimates are obtained, they should 

already include the interactions among the events. The 

basic assumption of cross-impact analysis is that the 

separate probabilities do take the interactions into 

account, but incompletely so that some modification is 

needed. 

Another assumption is that the cross-impact estimates 

are more "solid" than the absolute probability estimates. 

There are several motivations behind this assumption. 

First, there is widespread, and probably generally sound, 

opinion that relative probabilities are clearer and easier 

to estimate than absolute probabilities. I do not know 

of any experimental data to support this, but it does 

appear that the more limited reference of a relative 

probability makes it psychologically easier to deal with. 

Second, there is an argument (which may or may not have 

logical justification) that narrowing the reference class 

w 
There are a number of considerations which suggest 

that, for purposes of long-range planning, the absolute 
probabilities are of secondary interest, whereas the 
"scenario" probabilities, i.e., the probabilities of joint 
occurrence or nonoccurrence of many events, are more 
directly relevant. This topic will be discussed in the 
text in greater detail. 
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in some way makes the probability more "correct." This 

is the basis for Reichenbach' s recommendation [Ref. 2, 

p. 374] that in practical applications of probabilities 

(decisions) the narrowest reference class for which there 

is reliable information should be used. Finally, and 

probably most important for cross-impact analysis, the 

notion of cross-impacts is new, and should receive greater 

emphasis. 

None of the foregoing justifies the assumption that 

the cross-impacts are more solid than the absolute proba- 

bilities, but they do lend some heuristic weight to the 

computational structure. These considerations suggest 

that adjustments should be made in the absolute probabil- 

ities, not the cross-impacts. It will be shown below that 

this point of view cannot be maintained strictly.  Is is 

possible that inconsistencies appear in the cross-impacts 

as well as in the original estimates of absolute probabil- 

ities. However, this assumption can be maintained in a 

weaker sense if the cross-impacts can be adjusted without 

making use of the absolute probabilities, and then the 

absolute probabilities can be adjusted with fixed cross- 

impacts. 

The results to be presented in this Report, then, 

can be summed up by saying that given a set of estimates of 
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absolute probabilities and cross-impacts in the form of 

relative probabilities, simple tests exist for determining 

the consistency of the cross-impact matrix, and for deter- 

mining the consistency of the absolute probabilities given 

that the cross-impact matrix is consistent.  If the set of 

estimates is consistent, then no further computation is 

required.  If the set is not consistent, then a number of 

steps may be taken to adjust the set, ranging from simpli- 

fied averaging techniques to reiteration of the estimates, 

given a display of the inconsistencies involved. The 

adjustment procedure used should depend on the nature of 

the inconsistencies and the opportunities for querying the 

estimators again. 

The consistency condition derived below takes a par- 

ticularly elegant form when the cross-impact matrix is 

expressed as a set of relative probabilities, that is, 

the probability of event e. is p, given that event e. 

occurs. With cross-impacts of this form, the consistency 

condition can be stated as follows: The n events define 

an n-dimensional probability space (strictly speaking an 

n-dimensional hypercube, since each probability can vary 

only between 0 and 1). If the cross-impacts are mutually 

consistent, they define a single line in this hypercube, 

which passes through the origin. A set of absolute 
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probabllities consistent with the cross-Impacts will then 

define a point lying on this line. As It turns out, the 

condition Is relatively easy to test and allows a fairly 

simple description of methods of resolving Inconsistencies 

If the estimates do not pass the test. 

... ■ 
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II.  CONSISTENT SYSTEMS OF PROBABILITIES 

We will be concerned with an elementary system of 

probabilities: 

A. A set of n events    e,, e.,   ..., e.,   ..., e  . 
* 

B. A set of n absolute probabilities    of these 

events, Pfe^), P(e2) P(ei), ..., P(en)» 

2 
C. A set of n - n relative probabilities of the 

form Pfe./e ) PCe./e.), ... (read as "the 

probability of e. given that e occurs"), 

0,, A set of higher-order probabilities, illustrated 

by P(e • e • e. ), where the period indicates 

joint occurrence (read as "the probability that 

e., e., and e, all occur), 
i  j     k 

There is a large family of probabilities of type D. 

Since we will not deal formally with this set, they are 

not listed in detail. 

2 
The set of n - n relative probabilities of type C 

will be referred to as the cross-impact matrix. 

The notion of an absolute probability is sometimes 
misunderstood. For the purpose of this discussion, 
we simply assume a common universe of discourse for the 
events, and refer the probabilities to that. In this 
respect, the absolute probabilities of each event should 
reflect (in a completely buried form) all of the inter- 
actions between that event and all others. In particular, 
the absolute probability of an event is not interpreted 
in the Bayesian sense of an a priori probability. 

MHMMmMwi 
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The set of events je j could be a list of potential 

technological developments, a list of social or political 

events, a combination of these, or something entirely 

different, such as a set of symptoms of diseases among 

the total U.S. population. 

It is easy to show that for a complete specification 

of a system, 2-1 probabilities must be given; these 

are independent except for a set of inequalities illustrated 

by P(e. • e.) < P(e ). In general, the n absolute proba- 

2 
bilities and the n - n relative probabilities are quite 

insufficient to completely specify the system. 

Given a set of probabilities of the forms B and C, 

a simple question can be asked; namely, are they a consis- 

tent set? "Consistent" here means compatible with the 

usual calculus of probabilities. The question is meaning- 

ful because the set of probabilities in the forms B and C 

is redundant« 

There are two kinds of redundancy.  The first involves 

2 
the probabilities of type C. All of the n - n relative 

probabilities in the cross-impact matrix can be replaced 

by the "v1" ^ joint probabilities of the form ?ie±  . e ). 

(The factor 1/2 comes from the fact that joint occurrence 

is commutative.) In short, there are twice as many entries 

«iiiMnwumi,., i  
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in the cross-impact matrix as are needed to specify all 

probabilities involving no more than two events. 

The second type of redundancy involves the inter- 

relationship of the absolute and relative probabilities. 

Even with a consistent set of relative probabilities, the 

absolute probabilities may not combine with the relative 

probabilities in accordance with the rules of the calculus 

of probabilities. 

We will use three elementary postulates of the cal- 

culus of probabilities and one theorem. The three elemen- 

tary postulates are 

PI: Normalization. 0 < p < 1 for any probability p. 

P2: Rule of the product. P(e. • e.) = P(e.) . P(e./e.) 
i   J     i     j i 

- P(e ) • P(e /e ). 

P3: Rule of addition. P(e. or e.) = P(e.) + P(e.) - 
i   J     i     j 

P^ • e..). 

The theorem is one which I derived in my Ph.D. thesis, 

and is referred to in Reichenbach [Ref. 2, p. 112].  It 

will not be proved here, but simply stated. 

Theorem:  Rule of the triangle. 

(1)     ?(ei/ep •  PCe^ep . PCe,.^) 

= PCe./eJ   • P(ek/e.)   -   PCe^) 
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The theorem states that for a set of three events, 

the product of the relative probabilities multiplying 

around the triangle in one direction is equal to the 

product of the relative probabilities multiplying in the 

other direction (see Fig, 1). The theorem is easily 

extended to four or more events, but the same effect can 

be achieved by treating the larger set in subsets of three. 

Since we can assume that all the probabilities given 

in C and D are already between zero and one, the only role 

of PI is to combine with P2 and P3 to give the weak in- 

equality: 

(2)      P^) + PCej) - P^) . PCej/e^ < 1 

P(ei) + PCej) - PCej) . P^/ej) < 1 

pvv 
Fig. 1—Rule of the triangle 
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The rule of the product has an immediate consequence: 

(3) Ptej) - P(e1) •   PCe^e^  / FCe^) 

Eq. (3) can be interpreted as asserting that if PCe./e^ and 

PCe./e.) are fixed, then P^) and P(e.) must lie on a 

straight line through the origin in the PCe^, P(e.) unit 

square, as illustrated in Fig. 2. 

Fig. 2--Geometric representation of the 

rule of the product 

/ 
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Similarly, for all other pairs of events, the rule 

of the product implies that these must lie on a straight 

line through the origin in their respective unit squares 

when the relative probabilities are given. Now, if we 

consider the space of all the absolute probabilities-- 

the unit hypercube—the rule of the product in conjunction 

with the rule of the triangle assures that all of the 

absolute probabilities must lie on a single straight line 

within the hypercube. To illustrate this theorem, we 

first consider the unit cube defined by three events. 

Eq. (3) asserts that the probabilities must lie on the 

intersection of the planes defined by the straight lines 

in the respective unit squares. 

Figure 3 illustrates the intersection of the two planes 

defined by the pairs P(e ), ?(«.) and P(e.), P(ek)» There 

is one additional plane defined by the pair P(e.), P(e.); 

and the intersection of it with the first two produce two 

additional lines.  If the relative probabilities are con- 

sistent (by the rule of the triangle and the rule of the 

product) the three lines will coincide. Figure 3 portrays 

an inconsistent case. 

To present the general consistency condition for cross- 

impact matrices, it is convenient first to establish a lemma 
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^Intersection of 
/ planes defined by 

P (e./^), P (e^e.) and 

Ple./eJ, Pie-Ze.) 

P(el) 

Fig. 3—Inconsistent relative probabilities 

for three events 

. 

/ 
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conceming lines in n-dlmenslonal Euclidean spaces. A 

line is defined by two points X ■ (x,» x., ..., x ) and 

1 ■ (y*» Yn»  •••» y )• Any other point Z on the line 1  z    ' n 

is a linear combination of these two; i.e., Z » aX + (1 - a)Y, 

- «B < a < ». It is convenient to shift the origin to Y, 

in which case Z - Y « a(X - Y). Renaming Z - Y = Z* and 

X - Y - X', we have Z1 - oX'. 

Lemma 1; A necessary and sufficient condition that 

a matrix S - {•y}» where s  » 1/si4» sit " 1» define 

a line oX through the origin in n-dimensional Euclidean 

space, such that the slope x /x of the line projected on 

the two-dimensional subspace (i,j) is s.., is the triangle 

rule 

sij * Sjk ' Ski " 1 (a) 

Proof; 

Necessity. Assume there is a line oX with the 

hypothesized properties, then 

xi   xj    xk ij   jk   ki 

Sufficiency. Consider a matrix S that fulfills the 

triangle rule. Define a point X by 

xi " sij 

To eliminate inessential special cases, s.. is also 
assumed to be nonzero. J 

■  ■■   ■   ■■ ■■ ■■■   ■■■ 
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The triangle rule of Eq. (a) implies that 

sij • sji • 8ii - 1 

where 

and since 

'ji 
slj ' Sil 

(b) 

sil    li 

sli  ^i 

Since for any other point Y on the line otX, y./y. ■ 

ßx./3x » x./x., Eq. (b) is completely general. 

Lemma 1 is applicable to a cross-impact matrix by 

defining a matrix S:  s  = P(e /e )/P(e /e ). The 

conditions s.. ■ 1/s.. and s.. • 1 follow immediately from 

the definition, and the triangle rule Eq. (a) follows 

from the rule of the triangle for relative probabilities. 

The rule of addition can be invoked by determining 

the intersection of the lines defined by setting the 

inequalities to equalities in Eq. (2). Thus, 

(k) PCe^ + PCej) - PCe^ • PCe^e^ - 1 

PCe^ + P^) - PCe^ • PCe^) - 1 

Solving these two for PCe^) and P(e ) gives 

/ 

■ 
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(5) P(e.) ) 

P(ej/el) 

P ej = PCe^) + JfieJeJ  - PCe^) . PCe^e^^) 

It is simple to verify that the pair PCe.), P(e ) lies 

on the line defined by Lemma 1. 

The question still remains whether the limits imposed 

by different applications of Eq. (5) with different pairs 

result in the same limit. Thus, for example, we have 

PCe./e ) 
P(e ) =   i k  

P(ei/ek) + P(ek/ei) " P(ei/ek) ' P(ek/ei) 

In general, this is not the same limit as expressed by 

Eq. (5) above, thus the minimum of all the limits deter- 

mined by all pairs must be selected. The minimum fixes 

a point L on the consistency line in the hypercube; any 

acceptable point is lower than or equal to that point. 

This completes the set of consistency conditions. 

In sum, the consistency conditions define a line passing 

through the origin in the unit hypercube and a point on 

that line. To be consistent, the absolute probabilities 

must lie on the segment of that line between the origin 

and the given point. 

.. 
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The foregoing demonstrates the necessity, but not the 

sufficiency, of the conditions. A direct consequence of 

the rule of addition (P3) is that the probability of the 

disjunction of any subset of the absolute probabilities 

must be less than or equal to one. The disjunctive pro- 

babilities for subsets larger than two cannot be computed 

from the absolute probabilities and binary relative prob- 

abilities since the disjunctive probabilities of sets 

larger than two involve higher-order interactions. 

/ 
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III.  RESOLUTION OF INCONSISTENCIES 

In previous sections we defined a set of conditions 

to be met for a set of absolute probabilities and a cross- 

Impact matrix of relative probabilities to be consistent. 

The simplest application of the conditions for the matrix 

Is to test all triplets of relative probabilities by the 

triangle rule.  This test Is tedious.  There are 

"     6  "   triplets for n events.  For 50 events 

there are 19,600 triplets. 

However, It Is necessary to check only a subset of 

the triplets, a convenient subset being the set of tri- 

angles having one event In common. The number of triangles 

In such a subset Is \n " M Z    /t Thus, the number of 

Independent triangles Increases as the square of n, rather 

than as the cube which Is the case for the total number of 

triangles. This happy situation Is guaranteed by the fol- 

lowing lemma.* 

Lemma 2;  If the rule of the triangle holds for all 

triangles that have one event In common, then It holds for 

all triangles. 

*I would like to thank T. Brown and J. Spencer for 
helpful suggestions concerning this simplification of the 
consistency test. 

■ ■ 
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Proof;  Consider any event e., and any triangle e., 

e., e, , not Including e.. Assume that the rule of the tri- 

angle holds for all triangles containing e..  Then, abbre- 

viating PCe^e.) to P(l/j) gives 

P^/l) • P(l/j) • P(j/0 - P(l/0 • P(j/1) • PU/j) 

POcM) • P(j/k) • P(t/j) - P(t/k) • P(k/j) • P(j/t) 

?(i/l)   •  P(k/1)   •  P(t/k) - ?(l/i)   -  P(l/k)   •  P(k/t). 

Multiplying the three expressions on the left side 

of the equations and the three expressions on the right 

side, the terms containing I  cancel and we arrive at 

P(l/j) • P(j/k) • P(k/1) - P(j/1) • P(k/j) • P(l/k) 

which was to be proved. 

For the absolute probabilities, assuming the matrix 

is consistent, the simplest test is first to calculate the 

limits imposed by the rule of addition. Assuming that test 

is passed, the individual probabilities can be tested by 

starting with P(e,) and computing the others by the rule 

PCe^ - PCep • PCe^) 

• 
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It appears likely that in most practical applications 

the sets of probabilities will not be consistent, and a 

question arises as to the method of proceeding. There is 

no "correct" method of resolving the inconsistencies. There 

are several directions that can be taken, depending on the 

interest of the study manager, on the availability of re- 

spondents for reestimation, and the like. 

Assuming no restrictions on reestimation, it appears 

desirable to present the information concerning inconsis- 

tencies to the respondents, and obtain reestimates from 

them. This poses the question of how the information is 

to be presented to be useful to the respondents. 

One reasonable display can be obtained by computing 

the adjustments described below, and feeding back the orig- 

inal and adjusted estimates. 

Assuming that the cross-impact matrix is consistent, 

but the set of absolute probabilities does not lie on the 

line, a natural and simple adjustment is to choose the point 

on the line that is nearest to the estimated point, as illus- 

trated for two dimensions in Fig. 4. The computation of the 

nearest point is simple, given the line in parametric form. 

If P is the estimated point and otX is the line, then the 
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desired nearest point on the line Z is given by 

(6) 
E p.x. ri i z'^'&-m 

(0, I) 

.^ 
? \ 

\ 
\ 
\ \  ^ 

1               \ 

t 
^^ 

(0,0) 0,0) 

Fig.4—Adjustment of absolute probabilities by computing the 
nearest point on the line defined by the cross-impact matrix 

If Z lies above the limit L imposed by the rule of 

addition (Z* in Fig. 4), the most natural rule is to select 

L as the adjusted set of probabilities. 

The situation is not quite as neat if the cross-impact 

matrix itself is inconsistent. The problem here is that 

inconsistencies result in a set of lines, which can become 

very large rapidly, and there is no obvious way of weighting 

these in the computation of a representative line. A rela- 

tively simple adjustment, and one that appears sufficient 

/ 
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for the purpose—especially if the group Is expected to 

reestimate--ls the following: 

1    p<ei/
ei) (7) x, -JE.  i—L 'i  n"j 

Vt PC •JO 2 

This computation arises from allowing each row In the matrix 

in turn to generate a potential line, and averaging these 

lines by summing their Intersection with the unit sphere. 

Although Eq. (7) does not arise from any optimization rule, 

it does assure that in adjusting X the contributions of all 

other events to e. will be "taken into account," and the 

contribution of e. to all the other events enters in the 

normalization to the unit sphere. 

A more satisfying variant of the procedure in Eq. (6) 

would be to make use of group weights on the probabilities. 

That is, each member of the group can be requested to eval- 

uate how confident he is of his estimate (with some suit- 

able rating scale) and a group measure of confidence—e.g., 

the average of the individual ratings—can be used to weight 

the absolute probability estimates. 

If the weights w. are normalized so that 0 < w. < 1, 

where 1 Indicates certainty and 0 indicates sheer guess, 

then a reasonable weighted form of Eq. (6) would be 
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(8) ß 
E pixiwi 
"T""2 
E X.W. 

A weighted adjustment for the relative probabilities 

is much more complex; a reasonable form has not yet been 

derived.  One of the difficulties is that the consistency 

condition furnished by the rule of the triangle deals only 

with the ratios of the relative probabilities and not with 

the probabilities themselves. Ratios of estimated weights 

are somewhat awkward to use here. 

/ 
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IV.  SCENARIOS 

The cross-impact computation developed at The Insti- 

tute for the Future not only produces a Monte Carlo esti- 

mate of revised absolute probabilities, but also gives a 

Monte Carlo estimate of the probabilities of joint occur- 

rence of the total set of events. Each chain of events 

is a sample out of a large population of potential chains. 

The number of potential chains is nI2 . The factor 2 

arises from the total number of joint occurrences (posi- 

tive or negative) of n events, and the factor nl from the 

manner in which the next event in the chain is selected, 

namely, by considering each remaining event equally likely 

to be next. 

The computation involves a strong independence assump- 

tion, namely, that the change in the likelihood of occur- 

rence of a given event is influenced only by the preceeding 

event that has occurred.  (In some forms of the computation 

the change is assessed in terms of occurrence or nonoccur- 

rence of the preceeding event.)  In general probability 

systems, this assumption is not only not fulfilled; the 

assumption has as a consequence that the system is degen- 

erate. A simple example may suffice to show this.  If we 

make an assumption that all higher-order interactions are 

i 

. 
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determined solely by the first-order interactions,  then 

we would have 

(9) p(e
k/

ei  '   «j)  a p(ek/ei)  " P(ek/ej) 

Applying the assumption to all interactions would imply 

that all the cross-impacts for a given target event are 

equal. The same result follows from other forms of the 

same assumption, for example, 

(10) 

(11) 

P(e1 

P(e, 

Vei> P(e, eJ) 

e
k> 

P(e, 
j V 

P(ek) 

P(Fk) 

where the bar over an event indicates negation. 

The Monte Carlo computation developed by Corden et aU 

for the likelihood method involves a slightly weaker assump- 

tion than Eq. (9).  However, it is more complicated, and 

rather than try to deal with it analytically, a simple il- 

lustration will indicate th^ effect of the assumption. 

Consider the following cross-impact matrik: 

i   ; 

i i 
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1 0.5 0.5 

0.5 1 0.5 

0.5 0.5 1 

P(e1) - P(e2) - P(e3) « 0.25 

Let 

1 - P(e.) 

ij 

P(ei/e1) 

PC^T"  1 - FCej/e^ 

that is, t.. is the factor by which the odds for e. are 

multiplied to generate the odds for e., given that e. has 

occurred.  Then 

0.75  0.5 
12 " 0.25  0.5 

- 3 
ij 

for all i ?* j 

Each event has a positive impact on the others. 

If the Monte Carlo computation is carried through, 

P(e.) is adjusted from 0.25 to 0.32.  The computation sug- 

gests that in terms of the positive impacts the absolute 

probabilities should be higher.  However, the original 
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probabilities are fully consistent with the cross-impacts; 

the increase is, in this sense, unwarranted.* 

For purposes of evaluating policies, the probabilities 

of the chains (where each chain can be considered one sce- 

nario) are of greater interest than the absolute probabil- 

ities of the separate events. We have indicated that to 

make the scenario computation useful it will be necessary 

either to obtain estimates of the higher-order interactions 

or find a more logically correct assumption concerning them. 

The first alternative is rather discouraging.  The number 

of higher-ord-sr probabilities becomes somewhat astronomical 

with large sets of events. The second alternative—although 

more attractive in terms of the feasibility of obtaining 

estimates—is subject to the danger of artificiality. 

*    *   * 

This Report presents an elementary approach to the 

estimation of complex probability systems. Above all, it 

contains no consideration of the structural properties of 

the subject matter involved. Generally speaking, it can 

be expected that a given application, whether it is tech- 

nological events or health categories, will have certain 

*Although I have not made the calculation, it appears 
likely that most of the adjustment in the cases presented 
in Ref. [1] are of this sort. 

/ 
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underlying characteristics that will affect both the binary 

cross-impact probabilities and the higher-order interactions 

(e.g., with the health categories, it is very unlikely that 

any individual will simultaneously be afflicted with a large 

number of pathological conditions).  Convenient methods of 

expressing these structural properties have not, to my know-        , 

ledge, been defined for the kinds of systems in which cross- 

impact analysis would appear to be applicable. My first 

impression is that such structural properties may furnish 

the required assumption concerning higher-order probabilities. 

The resolution of inconsistencies in the cross-impact 

matrix expressed in Eq. (7) can probably be developed further 

and appears to be an interesting mathematical problem in 

its own right. 
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